MicroArray Explorer - a Tool for Data Mining of cDNA Microarrays: Overview

http://www.lecb.ncifcrf.gov/MAExplorer

PF Lemkin¹, GC Thornwall², K Walton³, L Hennighausen³
(1) LECB, NCI/FCRDC (2) SAIC/FCRDC (3) LGP, NIDDK
mail: lemkin@ncifcrf.gov

Revised: 7-10-2001
I. MAExplorer Overview

- MAExplorer is a Java-based data-mining tool for analyzing microarrays.
- Java provides real time response required for data-mining.
- Runs either as a stand-alone application or Web-browser applet.
- Stand-alone installers are available on the Web site for Windows 95/98/NT/2000, MacOS, Solaris, Linux, Unix, other Java compatible systems.
- Extended for different array substrates, geometries, ^{33}P or Cy3/Cy5 spot-labeling, and scanners using configuration files.
Data Mining - Finding Putative Relevant Patterns

General

Data reduction

Specific

Results

Quantified array spot data for multiple samples

Organize by sample, gene expr, gene sets

Change views: normalization, data filters

Visualize and query: plots, cluster, reports

Explore external genomic databases
MAExplorer User Interface

- Showing named genes and ESTs from the MGAP database
MAExplorer Overview - continued 2

- Helps analyze genes and gene family expression patterns for multiple samples

- Samples organization: X-Y paired samples, sets of X-Y replicate samples (X- and Y-sets), ordered expression profile list of samples (E-list)

- Data filters: use gene sets, spot intensity and ratio range, statistics and clustering to drill-down to subsets of genes of interest

- Generates plots: pseudo array image, scatter, histogram, expression profile, clustergram, dendrogram, silhouette plots
Operations on 2-conditions & N-conditions

- Set of HP-X replicate samples
- Set of HP-Y replicate samples
- Operations on sets of replicates - e.g. t-test, CV
- Order list of HP-E samples
- Operations on order lists of samples: e.g. clustering, EP plots
Gene Data Filter is Intersection of Tests

- Current set of genes is **intersection** of gene sets each passing selected filter tests
- Filtered gene subset is used as **pre-filter** for subsequent clustering, plots, and tables
- Changing any filter parameters causes the data filter to be re-computed
MAExplorer Overview - continued 3

- Cluster methods:
 a) similar genes
 b) K-means
 c) hierarchical clustering

- Reports: Web-accessible spreadsheets, or tab-delimited text exportable to Excel

- Direct manipulation of genes and gene sets, plots and reports, filter parameters, etc.

- Set operations on gene subsets and condition lists (samples) help manage search results

- Integrated Web browser access to public genomic, histology and model Web databases
Data is read from
 1. local files on a user's computer and/or
 2. downloaded from a Web array database server

Data is cached on local computer so analysis can continue off-line

Stand-alone version allows saving intermediate results and state of data-mining session to local disk

Research groups could use MAExplorer to publish their array data on their own Web servers similar to MGAP MAExplorer server

On-line documentation (manual, tutorials, etc.) available from Web site
Relationship of MAExplorer to Internet
(Steps in cyan are performed before MAExplorer analysis.)

cDNA clones spotted on chip supports

Labeled DNA probes → Hybridized microarrays

data
Auxiliary databases
Clone ID G.I.P.O.
Quantified spot data
Array sample DB
Gene Classes DB
Gene Names DB

State databases
User State DB
Groupware DB

MAExplorer applet program file

MAExplorer Web server

Scanned images

Image quantification

MAExplorer Web server

Proxy Web server

Other Genomic Web databases
I.M.A.G.E. DB
UniGene DB
dbEST DB
GeneBank DB
histology DB
models DB
GeneCard DB etc.

User's Web browser executing MAExplorer applet

Internet

Or

User stand-alone application on local file system
Client-Centric Computations - Advantages/Disadvantages

- **Client-centric approach primarily using Java**
 - a) + Java programs run (pretty much) on all operating system platforms as either stand-alone or applets (in browsers)
 - b) + handles rapid response required for direct manipulation on new generation of very fast desktop computers
 - c) + stand-alone version may be restarted quickly from data cached off-line
 - d) + size limitations not a problem with stand-alone Java applications
 - e) + Java plug-ins allows prototyping new local and Web DB analysis methods functionality by any group of users
 - f) - slow startup for applet version because the program and all data has to be downloaded each time it is run
 - g) - difficult to build large stable Web-applets handling very large data sets
 - h) - applications must be installed on clients computer where they may be some level of incompatibility
Server-Centric (CGI or Applet) Computations - Advantages/Disadvantages

- **Server-centric approach using mix of HTML, CGI and Java**
 - a) + may have better resources for very large data sets but with dependence on server
 - b) + faster startup than downloaded applet since minimal GUI is required and data does not have to be loaded before computation requests may be made to the server
 - c) + may be easier to prototype and distribute new functionality using 3rd party software such as RDBMS, S-plus, etc. using centralized CGI or servlets where only one copy is required on the server
 - d) - susceptible to Internet traffic bandwidth problems and server-load dependencies
 - e) - difficult to get very rapid response required for direct manipulation if all computations done on the server
Expression Data Used in MAExplorer

- **Database configuration data table** for specific array layout and content **

- **Hybridized array samples table** describing their experimental conditions **

- **Gene-In-Plate-Order table** (print table) listing Clone Ids, gene names, genomic DB Ids, spot and source plate coordinates **

- **Quantified array spot data table** for samples from quantification software such as GenePix™, Molecular Dynamics’ ImageQuant™, Research Genetics’ Pathways™, etc. **

- **Data is optionally cached** from a microarray Web database server data to the local computer. Future analysis of this data is then independent of the Web database server

- **External Web genomic databases** corresponding to probes and Clone IDs are accessed as needed: I.M.A.G.E, GeneBank, dbEST, UniGene, NCI/CIT mAdb Clone DB, GeneCard, MGAP histology and model DBs, etc.

** Auxiliary data required for MAExplorer is indicated in blue**
MAExplorer Home Page
http://www.lecb.ncifcrf.gov/MAExplorer

MicroArray Explorer for Data Mining Gene Expression Patterns

The Microarray Explorer (MAExplorer) is a Java-based data-mining facility for cDNA microarray databases. It may be freely downloaded and run as a stand-alone application on your computer, or run as an applet in your Web browser. The exploratory data analysis environment provides tools for the data-mining of quantitative cDNA expression profiles across multiple microarrays.

With this program it is possible to: 1) analyze the expression of individual genes; 2) analyze the expression of gene families and clusters; 3) compare expression patterns and outliers; 4) directly access other genomic databases for clones of interest. In the applet version, data is downloaded as required from the server to the user's Web browser where real-time analyses are performed. The stand-alone version uses previously quantified array data copied to the local computer where it may save data from data mining sessions.

Microarray data may be viewed and directly manipulated in array pseudoimages, scatter plots, histograms, expression profile plots, cluster analyses (similar clones, K-means, hierarchical clusters, etc.), and reports. A key feature is the clone data filters for constraining a working set of clones to those passing a variety of user-specified tests. Reports may be generated with hypertext Web access to genomic databases such as UniGene, GenBank, dbEST, I.M.A.G.E., NCI/CTT mAdb Clone DB and other Internet databases for sets of clones found to be of interest.

A major focus of this tool is interactive data mining with access to other supporting Web genomic databases. The emphasis on direct manipulation of clones and sets of clones in graphics and tables provides a high level of interaction with the data making it easier for investigators to test ideas when looking for patterns.
MAExplorer Stand-Alone Application for data mining cDNA microarray data

<table>
<thead>
<tr>
<th>Platform</th>
<th>includes Java VM</th>
<th>without Java VM</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Download (5.5M)</td>
<td></td>
<td>View</td>
</tr>
<tr>
<td>Mac OS</td>
<td>Download (7.1M)</td>
<td></td>
<td>View</td>
</tr>
<tr>
<td>Solaris</td>
<td>Download (7.4M)</td>
<td>Download (3.7M)</td>
<td>View</td>
</tr>
<tr>
<td>Linux</td>
<td>Download (10.3M)</td>
<td>Download (3.7M)</td>
<td>View</td>
</tr>
<tr>
<td>Linux</td>
<td>Download (3.7M)</td>
<td>Download (3.7M)</td>
<td>View</td>
</tr>
<tr>
<td>Other Java-enabled Platforms</td>
<td>Download (2.9M)</td>
<td></td>
<td>View</td>
</tr>
</tbody>
</table>
MGAP - MicroArray Explorer

The MAExplorer is an exploratory data analysis facility for cDNA microarrays from mouse mammary tissue and databases from the Mammary Genome Anatomy Project (MGAP).

MGAP MicroArrays used to Profile Gene Expression Patterns in Mammary Tissue

The MGAP microarray database provides access to microarrays which have been used to profile gene expression patterns in normal mammary tissue from different stages of development and neoplasia.

The Laboratory of Genetics and Physiology (LGP) has established the Mammary Genome Anatomy Program (MGAP) designed to identify and understand genetic pathways operative during normal mammary gland development and tumorigenesis. One arm of this program focuses on the use of cDNA microarrays to profile gene expression patterns. For this purpose, cDNA (EST) libraries are generated, sequenced and clone inserts are spotted on nylon membranes (by Research Genetics). These membranes are used to monitor expression profiles under various physiological conditions. At this point expression profiles have been obtained from several stages of normal mammary gland development and different tumor models. Access to these data and the MicroArray Explorer tools is granted to the scientific community.

The cDNA library Technology

EST (cDNA) libraries of normalized cDNA are generated from mammary tissue at different stages of development and from different transgenic mouse tumor models. Currently a library from lactating mammary tissue from C57/B6 mice is available (info available from the Laboratory of Genetics and Physiology). More than 5000 clones from this library have been sequenced (Genbank).
Arrays accessible by MAExplorer

- NCI/CIT/mAdb Cy3/Cy5 data from the NCI/ATC facility (http://nciarray.nci.nih.gov). CGI connectivity lets users download sets of hybridized arrays data for use with MAExplorer

- 33P membranes used in MGAP project (http://mammary.nih.gov/)

- 33P membranes (neuroarray) in collaboration with Mark Vawter (NIDA) & Kevin Becker (NIA)

- Databases have been constructed for other arrays using Excel editing of user data

- Incyte and Affymetrix arrays using pseudo-arrays using the new Cvt2Mae data converter tool (http://www.lecb.ncifcrf.gov/Cvt2Mae)

- Other array data may be converted using Cvt2Mae <User-defined> array layouts
II. Ongoing extensions to MAExplorer

- Adding other analysis and clustering tools to core MAExplorer program

- Directly connecting to other array database servers - but with a secure connection

- Cvt2Mae Java setup tool makes it easier to use MAExplorer on academic or commercial arrays

- Extending to other analysis schemes and existing software such as multi-dimensional scaling, clustering, etc. using user-specific Java Plug-ins

- Java plug-ins will be able to:
 a) implement new functions with Java code
 b) access other programs on local computer
 c) access client-server programs over the Internet or on same computer
Summary

- MAExplorer is used as a stand-alone application or as applet over the Web
- Accepts different array geometries, spot supports, 33P or Cy3/Cy5 glass slides, scanner data
- Analyzes multiple probes, X-Y replicate sets, expression profiles, replicate spots
- Provides direct manipulation of scatter-plots, histograms, clustergrams, dendrograms, silhouette plots, spreadsheets
- Filters genes by gene subsets, spot intensities and ratios, and statistical tests
- Set operations on gene subsets and sample condition lists help manage search results
- Uses Web links to genomic, histology and model Web databases
- Generates reports as Web-accessible spreadsheets or exportable to Excel
- Users may save their data-mining session state locally to continue later
- Share user states on a collaborative Web server i.e. “groupware” [Future]
- MAExplorer was used to identify genes in MGAP DB preferentially expressed during lactation. Results were verified using northern blots (NIDDK) (Nucleic Acid Res. 28:(22) 4452-4459).
- On-line documentation (manual, tutorials, etc.) is available on the Web site
- MAExplorer is available at http://www.lecb.ncifcrf.gov/MAExplorer
- MAExplorer is undergoing beta-testing